The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 1 1 1 1 X X 1 1 1 1 X X X X 1 1 X^2 0 X X X^2 X^3 1 1 X^2 X X X X 1 1 X^2 X^2 0 X^3 X X X^2 X^3 0 X^2 1 1 X^2 X^3 1 0 X^3+X^2 X^3 X^2 0 X^3+X^2 X^3 X^2 0 X^3+X^2 X^3 X^2 0 X^3+X^2 X^3 X^2 0 X^3+X^2 X^3 X^2 X^3+X^2 X^2 0 X^3+X^2 X^3 X^2 X^3+X^2 X^2 0 X^3 X^3+X^2 X^2 0 X^3 X^3+X^2 X^2 0 X^3 X^3+X^2 X^2 0 X^3 X^2 X^2 X^3+X^2 X^2 X^3 0 X^3 X^3+X^2 X^2 0 X^3 X^3+X^2 X^2 X^2 X^2 0 X^3 0 X^3 X^3 X^3 X^3+X^2 X^2 0 0 0 generates a code of length 68 over Z2[X]/(X^4) who´s minimum homogenous weight is 68. Homogenous weight enumerator: w(x)=1x^0+3x^68+56x^69+3x^70+1x^74 The gray image is a linear code over GF(2) with n=544, k=6 and d=272. This code was found by Heurico 1.16 in 0.219 seconds.